
WELCOME TO THE ERA OF SELF-PROTECTING SOFTWARE | CONTRASTSECURITY.COM

EXECUTIVE BRIEF

INTRODUCTION
Coverage is the most critical aspect of your application security strategy, but the word “coverage” itself
needs to be unpacked. There are four dimensions of application security testing coverage that have to be
considered, each of which is explained in greater detail in Figure 2.

1 Portfolio Coverage: Does your testing approach scale out effectively across your application portfolio?

2 Security Analysis Coverage: Is your testing robust enough to assess your applications for all the types
of vulnerabilities you care about?

3 Code Coverage: Do you effectively test all of the executed code that is part of your applications?

4 Continuous Coverage: Does your security testing run continuously with development?

In this brief, we leverage this four-dimensional framework to provide a practical comparison between
Contrast Assess and Static Application Security Testing tools and examine their respective abilities to
deliver coverage.

APPLICATION SECURITY TESTING COVERAGE
Four Reasons the Time for Static Application Security Testing (SAST) Has Passed

EXECUTIVE BRIEF | APPLICATION SECURITY TESTING COVERAGE

CONTRAST ASSESS VS. STATIC APPLICATION SECURITY TESTING (SAST)
Before diving into a side-by-side comparison of SAST and Contrast Assess, let’s take a qualitative look at
how SAST tools stack up compared to Contrast Assess.

SAST performs static code analysis to identify vulnerabilities by attempting to build a model of the
application and pseudo-execute it (via scans) to guess what its runtime behavior might look like. But, the
promise of static code analysis - finding flaws in code without having to build and run the program, is also
the source of the numerous limitations in the SAST approach and primary reason SAST tools are unable to
provide comprehensive coverage. This has always been a problem, but is particularly acute when it comes
to modern software development.

First, modern applications are mostly composed of third-party frameworks and libraries, and their
architecture is heavily designed around the use of APIs. They are assembled at runtime, and extensively
leverage dynamic language features (e.g., reflection, IoC/dependency injection, etc.). SAST tools, however,
have only limited context into these elements to inform analysis. Third-party components, custom
configuration items or changes that are external to code, and other features that modify the application’s
behavior during runtime, are all outside of the domain of what SAST covers.

Second, modern development teams, increasingly adopt hyper-agile processes, with workflows spanning
across multiple, continuous pipelines that dramatically increase the velocity at which applications evolve.
In such environments, developers require short feedback loops, and expect accurate results from testing
within minutes, not hours or days. The SAST model, however, heavily relies on security experts to effectively
implement long-running scans and then triage results. Experts are scarce resources that, more often than
not, become bottlenecks in the delivery pipeline. This model does not scale and cannot effectively provide
continuous vulnerability assessment.

Each of these constraints presents its own set of challenges to SAST, but they are interrelated in that they
adversely affect a SAST tool’s ability to provide coverage.

Contrast Assess leverages instrumentation to gain deep visibility into all the different layers of an
application, and uniquely combine multiple vulnerability analysis techniques into a single solution.
Instrumentation operates unobtrusively during normal use and testing of an application, enabling
the application to self-test for vulnerabilities with full runtime context and high accuracy. As security-
instrumented software runs, vulnerabilities are continuously and automatically identified and delivered to
Development and Security teams to act on. By eliminating scans, Contrast empowers experts to remove
themselves from the critical path of software development, while retaining oversight and spending more
time on strategic security initiatives. This model delivers the greatest degree of automation and scale to
achieve coverage.

 WELCOME TO THE ERA OF SELF-PROTECTING SOFTWARE | CONTRASTSECURITY.COM

EXECUTIVE BRIEF | APPLICATION SECURITY TESTING COVERAGE

Highlighted below is a comparison between SAST and Contrast Assess across the four dimensions of coverage:

Figure 1. Comparison between SAST and Contrast Assess across the four dimensions of coverage

SAST CONTRAST
Portfolio
Coverage

Hard to deploy and run at scale
• Significant effort to tune and run effectively
• Heavy reliance on human experts to triage results
• Scans complicate pipelines and often avoided/

ignored

Purpose-built to scale
• Fully automated solution, no experts required; applications

self-inventory and self-assess
• Runs in a distributed manner across pipelines
• Developer self-service drives adoption

Security
Analysis
Coverage

Limited
• Static code analysis only; no contextual

understanding of the running application
• Does not effectively handle dynamic language

features
• Does not effectively handle frameworks
• Prone to False Positives and False Negatives

Comprehensive
• Combines static, dynamic, runtime data/control flow,

configuration and composition analyses into a single
solution

• Instrumentation enables runtime context and visibility
into application; wealth of info sources, including HTTP,
code, 3rd party libraries, server environment, backend
connections etc.

Code
Coverage

Black-box
• Does not cover third-party libraries; does not cover

execution paths that go through library code
• Misses dynamically loaded/executed code
• Does not effectively work on APIs
• Static analyzer is a black-box; no way to measure

code coverage or influence the paths to be
analyzed

Transparent
• Analyzes the entire application (assembled and running)

across all executed code, including custom and open
source

• Effectively works with web applications and APIs; not
constrained by use of dynamic language features

• Monitors and reports on route coverage in real-time to
provide visibility into what parts of the app were analyzed

Continuous
Coverage

Does not support
• Point-in-time analysis; leaves gaps in between

scans
• Whole program analysis is required to find serious

flaws, but takes too long and is prone to FPs;
Lightweight and Incremental scans provide faster
results, but are limited in what they can analyze
and find, and provide significantly less security
coverage

Continuous by design
• Runs continuously across SDLC, from a dev workstation

with pre-commit local testing, through automated and
human driven tests in QA/staging environments to
production monitoring)

• Shortens feedback loops by delivering instantaneous
security feedback for early detection and remediation

• Agent install is one time-effort; then, agents automatically
deploy and update

CONCLUSION
To maximize application security coverage, security leaders should seek a solution that provides the most
assurance across the four dimensions of coverage with the least effort. While SAST is a well-established,
traditional approach to security testing, it is plagued with constraints limiting its ability to achieve coverage.

Contrast Assess transforms application security testing by making all existing testing work do double-duty
as security testing. That means that automated and human-driven tests, executed by application developers
and/or dedicated testing teams, and even live production traffic, all deliver a continuous stream of security
feedback. This gives organizations a massive leg up in increasing their application security coverage. The
key to this is instrumentation, which makes security testing coverage visible at all times, makes it easier to
increase coverage, and provides a clear path to achieving security testing completeness with high assurance.

For a deeper dive into this topic, read our technical brief Mastering Coverage: The Four Dimensions of
Application Security Coverage.

EXECUTIVE BRIEF | APPLICATION SECURITY TESTING COVERAGE

Contrast Security is the world’s leading provider of security technology that enables software applications to
protect themselves against cyberattacks, heralding the new era of self-protecting software. Contrast’s patented
deep security instrumentation is the breakthrough technology that enables highly accurate assessment and
always-on protection of an entire application portfolio, without disruptive scanning or expensive security
experts. Only Contrast has sensors that work actively inside applications to uncover vulnerabilities, prevent
data breaches, and secure the entire enterprise from development, to operations, to production.

240 3rd Street
Los Altos, CA 94022

888.371.1333
101718

2. Security Analysis Coverage: Is
your testing robust enough to assess
your applications for all the types of
vulnerabilities you care about?

Verifying your software is secure, requires
vulnerability assessment that delivers
both breadth and depth. To effectively
achieve that, you should ensure your
testing covers all permutations of

relevant vulnerabilities, while leveraging
the appropriate analysis technique for

each type of vulnerability. Moreover, you should
consider whether the tools you use even have the
information necessary to accurately diagnose
these vulnerabilities. Tools that are prone to false
positives waste time and destroy the value in
testing. False negatives are even more insidious,
leaving teams with a false sense of security, which
to more risk.

4. Continuous Coverage: Does your
security testing run continuously with
development?

Time is a critically important dimension for
security in the continuous world of Agile
and DevOps. In today’s ever-evolving
threat landscape and high-velocity

CI/CD pipelines, a single glimpse into
application security once every few weeks

or even a week is simply not enough visibility.
Continuous coverage requires an automated
solution that not only enables verification across the
SDLC, but also provide accurate, real-time stream
of security feedback that development teams
can immediately take action on. The key here is
end-to-end automation to remove bottlenecks and
establish short feedback loops, delivering the fast
turnaround teams need at each step in the pipeline.

1. Portfolio Coverage: Does your testing
approach scale out effectively across your
application portfolio?
Many organizations only test a very small portion

of their application portfolio. As a CISO at
one of our prospective customers once
volunteered “90% of our application
portfolio is one click away from the Wall
Street Journal”, illustrating this disturbing

reality. To scale vulnerability assessment
across your portfolio, you should remove

security experts from the critical path. The most
effective method to accomplish that is to embed
in your SDLC an automated solution that enables
your applications to self-inventory and self-test in
a distributed manner across all pipelines. Such a
solution should be rolled-out to development and
operations teams in a self-serviced way that stays
in their existing workflows and integrates into the
tools they already use.

3. Code Coverage: Do you effectively test
all of the executed code that is part of your
applications?

Code coverage is all about making sure
your testing efforts effectively analyze the
entire application, including the custom
code, dynamic code, frameworks, libraries,
deployment configuration and runtime

platform. Since modern applications are
dynamic and mostly comprise of third party
components, you should perform your vulnerability
assessment in the context of an assembled and
running application, not a pile of source code.
Finally, code coverage must be measured, so you
know what code paths were actually analyzed -
favor tools that provide this visibility.

Figure 2. A framework to evaluating your application security testing coverage

The four dimensions of application security testing tool coverage, explained in greater detail.

